Extração de conhecimento a partir de redes reurais recorrentes

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Simon, Denise Regina Pechmann
Orientador(a): Cechin, Adelmo Luis
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio do Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/2208
Resumo: Neste trabalho é proposto um método de extração de conhecimento a partir de Redes Neurais Recorrentes. Expressar formalmente o conhecimento armazenado dentro de uma Rede Neural Artificial representa um grande desafio, já que tal conhecimento precisa ser reformulado e apresentado de uma maneira simples e inteligível. Três formalismos simbólicos são abordados para a representação deste conhecimento: Autômatos Finitos Difusos, Cadeias de Markov e Autômatos Finitos Determinísticos. Para as extrações de conhecimento utilizadas no trabalho, atribui-se significado às regiões do espaço de atividade dos neurônios. O método proposto utiliza a clusterização do espaço neural para obtenção dos estados do autômato, sendo utilizados para isso, o algoritmo K-means e a clusterização difusa. A obtenção do conhecimento é feita utilizando-se Redes Neurais Recorrentes para aprender o comportamento de dois sistemas dinâmicos não lineares e, a partir das redes treinadas, extrair os estados e possíveis transições do autômato. Os sis