Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
D'Arbo Junior, Hélio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18133/tde-28112017-115319/
|
Resumo: |
Dois problemas de planejamento de trajetórias são tratados nesta dissertação, sendo um discreto e outro contínuo. O problema discreto consiste em estabelecer todos os estados intermediários de uma trajetória para levar um conjunto de quatro blocos de uma posição inicial à uma posição meta. O problema contínuo consiste em planejar e controlar a trajetória do braço mecânico PUMA 560. A classe de modelos que se utilizou nesta dissertação foram os modelos parcialmente recorrentes. O problema discreto foi utilizado com a finalidade de comparar os seis modelos propostos, buscando obter um modelo com bom desempenho para resolução de problemas de produção de seqüências temporais. Para o problema contínuo aplicou-se apenas o modelo que apresentou melhor desempenho na resolução do problema discreto. Em ambos os casos são apresentados como entrada para a rede, o ponto inicial e o ponto meta. Dois tipos de testes foram aplicados as arquiteturas: teste de produção e de generalização de seqüências temporais. Para cada problema foram criados quatro tipos distintos de trajetórias, com graus de complexidades diferentes. Para o problema discreto, em média, a arquitetura com realimentação da camada de saída para a camada de entrada e da camada de entrada para ela mesma, todos-para-todos, foi a que apresentou menor número de épocas e também os menores valores de erro durante o treinamento. Foi o único que conseguiu recuperar todos os padrões treinados e de forma geral apresentou melhor capacidade de generalização. Por isto, este modelo foi escolhido para ser aplicado na resolução do problema contínuo, tendo bom desempenho, conseguindo reproduzir as trajetórias treinadas com grande precisão. Para o problema discreto todos os modelos apresentaram baixa capacidade de generalização. Para o problema contínuo o modelo abordado apresentou-se de forma satisfatória mediante o acréscimo de ruído. |