Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
COSTA, Edbhergue Ventura Lola |
Orientador(a): |
NOGUEIRA, Romildo de Albuquerque |
Banca de defesa: |
BARBOSA, Catão Temístocles de Freitas,
SÁ, Fabricio Bezerra de,
DIAS, Paulo Fernando |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biociência Animal
|
Departamento: |
Departamento de Morfologia e Fisiologia Animal
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4498
|
Resumo: |
The formation of vascular network is governed mainly by two processes, vasculogenesis and angiogenesis. In vasculogenesis, the angioblastic which are the precursors of endothelial cells arising in germ layer (mesoderm) of the yolk sac (outside the embryo body). These angioblastic organize themselves to form blood islands, differing in blood vessels where the primordial endothelial tubes exhibit relatively uniform sizes. Subsequently, endothelial cells and smooth muscular cells will grow in response to factors and specific signals, so the blood vessels of smaller diameters are generated from the preexisting vessels, allowing the structuring of a complex vascular network and more stable, with vases of different diameters. This process is called angiogenesis. The chorioallantoic membrane (CAM) of quail and chicken is a good experimental animal model for studying the formation of blood vessels, as a structure extra-embryonic that is enough vascularized. Recent studies have shown that electromagnetic fields (EMFs) from 50/60 Hertz, typically generated by power lines, are able to produce adverse effects in humans and animals, that includes changes in the system of vessels and blood capillaries. This work was analyzed, based on fractal theory, the process of formation of the blood vascular network of chorioallantoic membrane of Japanese quail embryos (Coturnix japonica) exposed to electromagnetic field (EMF) of extremely low frequency (60 Hz) at different time on the blood vascular system. The results of this study show, based on calculations of these fractal dimensions, depending on what time of exposure to EMF may be an inhibitory effect or there is no change on the process of vasculogenesis and angiogenesis of extra-embryonic vascular network of Japanese quail embryos. |