Prioris para modelos probabilísticos discretos em ciências agrárias
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática Brasil UFRPE Programa de Pós-Graduação em Biometria e Estatística Aplicada |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5087 |
Resumo: | Objetivando selecionar prioris mais adequadas para dados discretos estudamos técnicas para determinação de prioris, tais como métodos de Laplace, método de Jeffreys e método de Haldane em que as prioris sâo conjugadas. Foi tomada uma amotra de dez granjas dentre as 53 existentes do Estado de Pernambuco com o propósito de estimar a probabilidade de ovos comerciais (grandes). Tendo em vista que os ovos são classificados como industrial, pequeno, médio, grande, extra e jumbo, classificamos os ovos em pequeno e grande. Os ovos industriais, pequenos e médios foram tidos como pequeno e os ovos grandes, extra e jumbo , como grande. Com a suposição de que os dados amostrais seguem uma distribuição binomial e utilizando prioris determinadas pelos métodos acima descritos, utilizamos o software Winbugs 1.4 com o qual foram calculados a média, desvio padrão, intervalo de credibilidade de 95% e sua amplitude. Para cada um dos métodos utilizamos 20.000 iterações das quais as 10.000 primeiras foram descartadas observando-se que o equilíbrio da cadeia iniciou-se com 12.500 iterações. Obtivemos uma estimativa média do parâmetro p o qual foi semelhante nos métodos de Laplace, Jeffreys e Haldane, correspondendo a aproximadamente p= 0,664. |