Redes probabilísticas de K-dependência para problemas de classificação binária

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Souza, Anderson Luiz de
Orientador(a): Louzada Neto, Francisco lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
KDB
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4560
Resumo: Classification consists in the discovery of rules of prediction to assist with planning and decision-making, being a continuously indispensable tool and a highly discussed subject in literature. As a special case in classification, we have the process of credit risk rating, within which there is interest in identifying good and bad paying customers through binary classification methods. Therefore, in many application backgrounds, as in financial, several techniques can be utilized, such as discriminating analysis, probit analysis, logistic regression and neural nets. However, the Probabilistic Nets technique, also known as Bayesian Networks, have showed itself as a practical convenient classification method with successful applications in several areas. In this paper, we aim to display the appliance of Probabilistic Nets in the classification scenario, specifically, the technique named K-dependence Bayesian Networks also known as KDB nets, as well as compared its performance with conventional techniques applied within context of the Credit Scoring and Medical diagnosis. Applications of the technique based in real and artificial datasets and its performance assisted by the bagging procedure will be displayed as results.