Alternativas e comparações de modelos lineares para estimativa da biomassa verde de Bambusa vulgaris na existência de multicolinearidade

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: SILVA, Adriano Victor Lopes da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4454
Resumo: O objetivo deste trabalho foi utilizar métodos estatísticos univariado e multivariado na seleção de variáveis independentes, em modelos matemáticos lineares para a estimativa da biomassa verde da haste principal do bambu, Bambusa vulgaris, visando reduzir tempo e custo sem perda de precisão, além de empregar alternativas para estimação na existência de multicolinearidade. Os dados foram provenientes de um experimento conduzido pela empresa Agroindustrial Excelsior S. A. (Agrimex) localizada no Engenho Itapirema na cidade de Goiana – PE. Foram utilizadas 450 hastes de bambu, que tiveram sua biomassa verde quantificada através do peso e 4 variáveis independentes medidas na mesma haste. Inicialmente, verificou-se a existência da multicolinearidade por meio da matriz de correlação das variáveis independentes e pelo fator de inflação da variância. Para seleção das variáveis independentes foram utilizados os métodos:Stepwise e Retenção por K componentes. As alternativas utilizadas foram a Regressão com os componentes principais e Regressão Ridge. No geral, em apenas uma situação os métodos de seleção de variáveis se comportam adequadamente na existência de multicolinearidade entre as variáveis explicativas, exatamente o método multivariado de retenção por K=3 componente pela matriz de covariância, modelo de Spurr. Os métodos alternativos de estimação conduzem respostas semelhantes, mesmo que possuindo estruturas diferentes, no entanto, a regressão com os componentes principais obteve os melhores resultados.