Análise não linear de padrões encefalográficos de ratos normais e em status epilepticus submetidos a dieta normal e hiperlipídica

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: PESSOA, Daniella Tavares lattes
Orientador(a): NOGUEIRA, Romildo de Albuquerque
Banca de defesa: GUEDES, Rubem Carlos de Araújo, SILVA, Isvânia Maria Serafim da, MENDES, Bruno Tenório
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Biociência Animal
Departamento: Departamento de Morfologia e Fisiologia Animal
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4546
Resumo: The increased consumption of hyperlipidic diet has been an increase in obesity rates and levels of serum cholesterol and triglycerides in a large part of the population, as well as, has been linked with the development of neurodegenerative diseases, such as Alzheimer's disease. On the other hand, several studies demonstrated the importance of lipids in brain structure and activity. Epilepsy is a pathology related to the brain activity disorder, with high rate of refractoriness to conventional therapeutics, in these cases hyperlipidic diet has been used such an alternative treatment. Therefore, the investigation of possible interference from hyperlipidemic diets in TLE can add new perspectives in understanding the behavior and treatment of this pathology. In the present study we used mathematical computational methods to analyze electrographic patterns of rats in status epilepticus induced by pilocarpine fed with hyperlipidic diet. These rats were analyzed through electrographic parameters using ECoG records and determining: energies of power spectrum in the frequency of delta, theta, alpha and beta waves; Lempel-Ziv complexity; and fractal dimension of phase space. Status epilepticus induced changes in the encephalographic pattern measured by distribution of main brain waves using power spectrum, Lempel-Ziv complexity and fractal dimension of phase space. Hyperlipidic diet in normal rats also changed the values of brain waves energy in power spectrum and Lempel-Ziv complexity; however, fractal dimension of phase space showed no significant differences due to hyperlipidic diet treatment. Despite the hyperlipidic diet reduced brain activity before pilocarpine administration, the nutritional status did not change the encephalographic pattern during status epilepticus. In conclusion, hyperlipidic diet induced slower brain waves and decreased the complexity of brain activity, opposite effects of status epilepticus. Therefore, the mathematical methods were effective to detect brain hyperactivity caused by status epilepticus and reduced brain activity induced by hyperlipidic diet.