Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
SALES, Amanda Emmanuelle
 |
Orientador(a): |
PORTO, Tatiana Souza |
Banca de defesa: |
TAKAKI, Galba Maria de Campos,
CORREIA, Maria Tereza dos Santos,
STAMFORD, Tânia Lúcia Montenegro,
PONTUAL, Emmanuel Viana |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biociência Animal
|
Departamento: |
Departamento de Morfologia e Fisiologia Animal
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4455
|
Resumo: |
Fibrinolytic proteases are enzymes that degrade fibrin, the main component of blood clots. The accumulation of this protein leads to thrombosis responsible for cardiovascular disease including myocardial infarction. A promising alternative to thrombolytic therapy has been the production of these enzymes by microorganisms which promotes low cost, high efficiency and capacity for large scale production. This study aimed to select species of filamentous fungi isolated from Caatinga soil samples - Pernambuco - Brazil and assess their potential for production of proteases with fibrinolytic activity. Among the 36 isolates studied, 58% showed fibrinolytic activity above 100 U/mL. The microorganism with the higher activity in terms of enzyme production was Mucor subtilissimus UCP 1262 with 415 U/mL. Further optimization of the fermentation process resulted in the production of 1075 U/mL of enzymatic activity. The fibrinolytic enzyme had a capacity of enzymatic degradation of the blood clot of 16.7 % in vitro. Extraction of fibrinolytic protease produced at submerged fermentation was carried out using a PEG/ammonium sulphate aqueous two-phase system (ATPS). PEG 8000 15% and 25% ammonium sulphate were selected as the most appropriate components for extraction with Fibrinolytic Activity in salt phase: 345 U/mL; K: 0.65; Y: 253.1 % and FP: 8.8. The fibrinolytic enzyme from Mucor subitilissimus UCP 1262 was pre-purified using extractive fermentation in PEG and ammonium sulphate ATPS, in which the fungal strain was able to grown even in high salt concentration, produced and extracted simultaneously to the PEG phase. A novel protease with fibrinolytic activity was purified also by chromatographic methods using a two-step purification protocol. Compared to the crude enzyme extract, the specific activity of the enzyme increased 5.30 fold with a recovery of 36.31%. The initial crude extract with the enzyme was pre-purified using acetone precipitation and adsorbed by ion exchange chromatography on DEAE-sephadex G50. The two-dimensional electrophoresis system (2DE) coupled with SDS-PAGE showed a single protein band of approximately 15.3 kDa and isoelectric focusing point of 3.9, exhibiting a nature as an acidic enzyme. Additionally, the activity was slightly inhibited by EDTA, but significantly inhibited by PMSF and also had a higher affinity for the N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide (SAApNA) and azocasein substrates, suggesting to be a chymotrypsin-like protease. Protein unfolding induced by pH and temperature were applied to study the protein conformational changes and showed from the thermal denaturation curve, change in ellipticity at 222 nm, indicated Tm (Melting temperature) of the protein to be 58.14°C. The far UV circular dichroism (CD) of the fibrinolytic protease showed the secondary structure with most content percentage of α-helix. These results demonstrate an economical, viable enzyme purification protocol. And studying the purified fibrinolytic enzyme have established basis for elucidating mechanisms responsible for the changes in conformation of the new fibrinolytic enzyme under varying conditions of temperature and pH. This novel fibrinolytic enzyme may represent a new source of therapeutic agents to treat thrombosis diseases. |