A função exponencial

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: DANTAS, Emerson de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Departamento de Matemática
Brasil
UFRPE
Programa de Pós-Graduação em Matemática (PROFMAT)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6703
Resumo: Este trabalho tem por motivação a Equação Funcional de Cauchy f(x + y) = f(x).f(y), característica da Função Exponencial. Para chegarmos a essa equação iniciaremos o nosso estudo pelas definições e demonstrações das Propriedades da Potência de Expoente Real, destacando o caso em que a Potência tem Expoente Irracional, além de fazermos uma proposta pedagógica sobre o ensino de Potenciação, Caracterização da Função Exponencial e Equação Funcional Linear de Cauchy