Análise multivariada no estudo de padrões na mastofauna do bioma caatinga

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: SANTANA, Ilzes Celi Cruz de lattes
Orientador(a): CRUZ, Maria Adélia Oliveira Monteiro da
Banca de defesa: PONTES, Antônio Rossano Mendes, DEZOTTI, Cláudia Helena, NOGUEIRA, Romildo de Albuquerque
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Biometria e Estatística Aplicada
Departamento: Departamento de Estatística e Informática
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4999
Resumo: The mammalian fauna of the Caatinga Biome was recently analysed throughout the definition of a National Conservation Strategy and to evaluated the environmental impact. The objective was identify pattern and analyses the adjustment of most common index. A total of 69 mammals was captured in two States (Pernambuco and Ceará) in ten (10) different vegetation types on dry and wet season. For each vegetation type and season were calculated the Capture Effort and the Capture Success. Described Statistical Analysis (sum, mean, percentages, and frequency) was utilized to calculate Abundance and Biological Characteristics of the entirety mammalian fauna. Those characteristic include sex, age classes, occupation and diary activity. Confirmatory Analyses (Qui-square Test and Pearson Coefficient of Correlation) was employed to test differences in mammals’ distribution between vegetation types and seasonality. The searching for pattern used Cluster Analyses (Median Method and Jaccard Coefficient). It created three clusters. For each one it was used Coefficients of Richness (Margalef) and Dominance and the Index of Diversity (Shannon). Ours results shows that clusters with six out of 10 vegetation types – called Habitat X – had adiversified mammalian fauna (α = 10,95 e H´ = 2,32), nevertheless the specie dominance was a marsupial Didelphis albiventris. The second cluster had three out of 10 vegetation type – called Habitat Y – no species were dominant. The third cluster – Habitat Z – with only one vegetation type, was different from the others, mainly due to its proximity to human settlements and plantations. In conclusion we could say that the Caatinga Biome is diverse and complex on its mammalian fauna aspects. It was possible to join vegetation types geographically apart in order to its mammals’ similarities. Habitats X and Y showed low similarities in mammals’species composition (Sxy = 0,30). The method of capture and the small success of capture, despite a significant effort, interfered in our results. An enormous effort should be carried out to keep representative and sustainable samples of this biome, because we know almost nothing about it.