Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
OLIVEIRA, Ricardo Tavares Antunes de
 |
Orientador(a): |
FERREIRA, Tiago Alessandro Espínola |
Banca de defesa: |
NEGRA, Silvana Boca,
CAVALCANTI, George Darmiton da Cunha |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Informática Aplicada
|
Departamento: |
Departamento de Estatística e Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6719
|
Resumo: |
This dissertation disusses the problem of combining models for time series forecasting. In this context, the main characteristics and basic properties of combined models are presented. Some of the main methods of time series forecasting present in the literature are described. Computational experiments compare diverse copulas-based combined models. First of all, an algorithm is presented to combine predictions of the predictive models via Gumbel-Hougaard copula. In the second case, it is proposed a combined estimator constructed via non parametric Cacoullos multivariate functions. In the third and nal case of study, the main results of this dissertation are presented, in which an experiment that compares combined estimators constructed taking into account thousands of time series and numerous forecasting models were simulated. Thus, computational experiments show that the combined estimator constructed via copula obtained better results compared with the individual models and the linear combination method. |