Uma abordagem com learning analytics e séries temporais na análise de dados educacionais
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática Brasil UFRPE Programa de Pós-Graduação em Informática Aplicada |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7853 |
Resumo: | A modalidade de educação a distância (EaD), antes discriminada por estudantes dos mais variados seguimentos sociais, vem se firmando como uma excelente alternativa à educação tradicional. A sua evolução tem estreitos laços com os avanços em tecnologia da informação e comunicações. A expansão da banda larga para os lugares mais distantes do país, oferecendo acessos cada vez mais velozes à internet, favorece a disseminação de cursos de EaD oferecidos por instituições educacionais da iniciativa privada e pública. Essa mudança de paradigma na educação trouxe transformações no comportamento de gestores e professores, que cada vez mais fazem do uso da tecnologia para criação de conteúdos didáticos mais interessantes e interativos, bem como, no comportamento dos estudantes, que devem se adaptar à nova realidade, deixando de ser agentes passivos no processo educacional para se tornarem agentes ativos de sua própria aprendizagem, por meio de comportamentos de autorregulação. Para que ocorra a interação on-line entre estudantes e professor, é necessário a implantação de um ambiente virtual de aprendizagem (AVA), a exemplo do Moodle. Esse ambiente é fundamental para a comunicação síncrona e assíncrona entre os atores da EaD, armazenando em seu banco de dados todas as interações que estudantes, professores e tutores realizam durante as atividades on-line. Tais interações tornaram-se campo fértil para pesquisadores de mineração de dados educacionais e learning analytics estudarem o comportamento desses estudantes por meio de atributos derivados dessas interações. Neste contexto, esta pesquisa apresenta uma abordagem de aprendizado não supervisionado de máquina, com o algoritmo de agrupamentos k-means, para descobrir padrões de comportamentos de engajamento e procrastinação de estudantes de um curso de licenciatura a distância. As interações de estudantes e professores foram extraídas de arquivos de logs do Moodle, AVA utilizado pela Instituição de Ensino Superior que oferece o curso, e transformadas em atributos usados na criação das séries temporais que compõem o conjunto de dados de entrada do algoritmo de agrupamento. Encontrando como resultado grupos de estudantes com níveis baixo, intermediário e alto de engajamento, que apresentam relação entre o comportamento de procrastinação e o desempenho ao final da disciplina. |