Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Lacerda, Ivan Max Freire de |
Orientador(a): |
Valentim, Ricardo Alexsandro de Medeiros |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/25609
|
Resumo: |
O crescente aumento dos dados registrados em cursos ofertados na modalidade a distância proporciona a utilização de métodos computacionais adaptados a pesquisa e agrupamento de dados educacionais, visando a descoberta de comportamentos de aprendizado. Essa área de pesquisa possibilita o desenvolvimento de ferramentas automatizadas de acompanhamento, predição e intervenção visando o aprimoramento dos índices educacionais. Em virtude disso, este trabalho propõe uma metodologia para a análise de programas de ensino a distância com base na tecnologia Learning Analytics, utilizando os dados de acesso dos alunos ao Ambiente Virtual de Aprendizagem (AVA), identificando os padrões sequenciais de uso mais frequentes e classificando-os de acordo com as categorias de aprendizagem autorregulada. Para a mineração sequencial de dados sequenciais os algoritmos SPAM e VGEN foram aplicados aos bancos de dados de duas instituições educacionais. Além do desenvolvimento da metodologia, como resultado desse processamento, uma grande incidência de um comportamento não previsto pela teoria da aprendizagem autorregulada foi identificado, e para classifica-lo foi criado um padrão chamado baixa participação. |