Magister - Metodologia de análise de programas de educação à distância baseada em Learning Analytics

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Lacerda, Ivan Max Freire de
Orientador(a): Valentim, Ricardo Alexsandro de Medeiros
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/25609
Resumo: O crescente aumento dos dados registrados em cursos ofertados na modalidade a distância proporciona a utilização de métodos computacionais adaptados a pesquisa e agrupamento de dados educacionais, visando a descoberta de comportamentos de aprendizado. Essa área de pesquisa possibilita o desenvolvimento de ferramentas automatizadas de acompanhamento, predição e intervenção visando o aprimoramento dos índices educacionais. Em virtude disso, este trabalho propõe uma metodologia para a análise de programas de ensino a distância com base na tecnologia Learning Analytics, utilizando os dados de acesso dos alunos ao Ambiente Virtual de Aprendizagem (AVA), identificando os padrões sequenciais de uso mais frequentes e classificando-os de acordo com as categorias de aprendizagem autorregulada. Para a mineração sequencial de dados sequenciais os algoritmos SPAM e VGEN foram aplicados aos bancos de dados de duas instituições educacionais. Além do desenvolvimento da metodologia, como resultado desse processamento, uma grande incidência de um comportamento não previsto pela teoria da aprendizagem autorregulada foi identificado, e para classifica-lo foi criado um padrão chamado baixa participação.