Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
SIMÕES, Simone Castelo Branco
 |
Orientador(a): |
OLIVEIRA JUNIOR, Wilson Rosa de |
Banca de defesa: |
STOSIC, Borko,
AMARAL, Getúlio José Amorim do,
CARVALHO, Francisco de Assis Tenório de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biometria e Estatística Aplicada
|
Departamento: |
Departamento de Estatística e Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5351
|
Resumo: |
In pattern recognition, the medical diagnosis has received great attention. In gene-ral, the emphasis has been to identify one best model for diagnostic forecast, measured according to generalization ability. In this context, ensembles methods have been eficients, can be considered on the improvement of performance in diagnostic tasks that demand greater precision. The bagging method, purposed from Breiman (1996), uses bootstrap to generate different samples of the training set, building classifiers with the generated samples and combining different forecasts for majority vote. In general, empirical estudies are done for evaluate the bagging performance. In this thesis, we investigate the bagging generalization ability for statistical usual classifiers and the multilayer perceptron net through sthocastic simulation. Different structures of separation of populations are build from especific distributions. Additionally, we make an application on diagnostic suport of brest cancer. The results were obtained using R. In general, we observed that bagging performance depends on the population separation behavior. In the application, bagging showed to be e±cient on sensibility improvement. |