Agregação via bootstrap: uma investigação de desempenho em classificadores estatísticos e redes neurais, avaliação numérica e aplicação no suporte ao diagnóstico de câncer de mama

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: SIMÕES, Simone Castelo Branco lattes
Orientador(a): OLIVEIRA JUNIOR, Wilson Rosa de
Banca de defesa: STOSIC, Borko, AMARAL, Getúlio José Amorim do, CARVALHO, Francisco de Assis Tenório de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Biometria e Estatística Aplicada
Departamento: Departamento de Estatística e Informática
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5351
Resumo: In pattern recognition, the medical diagnosis has received great attention. In gene-ral, the emphasis has been to identify one best model for diagnostic forecast, measured according to generalization ability. In this context, ensembles methods have been eficients, can be considered on the improvement of performance in diagnostic tasks that demand greater precision. The bagging method, purposed from Breiman (1996), uses bootstrap to generate different samples of the training set, building classifiers with the generated samples and combining different forecasts for majority vote. In general, empirical estudies are done for evaluate the bagging performance. In this thesis, we investigate the bagging generalization ability for statistical usual classifiers and the multilayer perceptron net through sthocastic simulation. Different structures of separation of populations are build from especific distributions. Additionally, we make an application on diagnostic suport of brest cancer. The results were obtained using R. In general, we observed that bagging performance depends on the population separation behavior. In the application, bagging showed to be e±cient on sensibility improvement.