Método bagging para aprimoramento de previsões de séries temporais

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Camargo, Juliana Shibaki
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-105655/
Resumo: Diferentes metodologias são propostas e exploradas com o intuito de reduzir o erro de previsão de séries temporais. Uma estratégia que vem se apresentando bastante promissora consiste em combinar diferentes previsões de diferentes modelos a fim de se obter uma melhor acurácia, ou seja, um menor erro de previsão. Este trabalho teve como objetivo realizar um estudo e aplicação do método bootstrap aggregating, mais conhecido como bagging, para aprimorar previsões de séries temporais. Primeiramente, cada série temporal foi separada em série de treinamento e série de teste, e então utilizou-se a metodologia moving block bootstrap aplicada à série de treinamento para gerar diferentes séries reamostradas, realizar a previsão de cada uma delas e combiná-las, obtendo-se assim uma previsão final combinada. Posteriormente, a série de teste foi utilizada para calcular a acurácia dos modelos, individual e combinado. Foram realizados um estudo com séries simuladas e uma aplicação com séries temporais reais mensais. O modelo escolhido e ajustado para cada uma das séries foi obtido através da função auto.arima(), disponibilizada pelo pacote forecast do software R. As medidas de acurácia utilizadas foram o erro quadrático médio e sua raiz, o erro percentual absoluto médio arcotangente e o erro percentual absoluto médio simétrico. Ao final do estudo, explorou-se o impacto que a variação dos parâmetros da reamostragem do modelo combinado causa na previsão e foram realizadas comparações entre os métodos de previsão combinado e individual.