Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Camargo, Juliana Shibaki |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-27012022-105655/
|
Resumo: |
Diferentes metodologias são propostas e exploradas com o intuito de reduzir o erro de previsão de séries temporais. Uma estratégia que vem se apresentando bastante promissora consiste em combinar diferentes previsões de diferentes modelos a fim de se obter uma melhor acurácia, ou seja, um menor erro de previsão. Este trabalho teve como objetivo realizar um estudo e aplicação do método bootstrap aggregating, mais conhecido como bagging, para aprimorar previsões de séries temporais. Primeiramente, cada série temporal foi separada em série de treinamento e série de teste, e então utilizou-se a metodologia moving block bootstrap aplicada à série de treinamento para gerar diferentes séries reamostradas, realizar a previsão de cada uma delas e combiná-las, obtendo-se assim uma previsão final combinada. Posteriormente, a série de teste foi utilizada para calcular a acurácia dos modelos, individual e combinado. Foram realizados um estudo com séries simuladas e uma aplicação com séries temporais reais mensais. O modelo escolhido e ajustado para cada uma das séries foi obtido através da função auto.arima(), disponibilizada pelo pacote forecast do software R. As medidas de acurácia utilizadas foram o erro quadrático médio e sua raiz, o erro percentual absoluto médio arcotangente e o erro percentual absoluto médio simétrico. Ao final do estudo, explorou-se o impacto que a variação dos parâmetros da reamostragem do modelo combinado causa na previsão e foram realizadas comparações entre os métodos de previsão combinado e individual. |