MCAC - Monte Carlo Ant Colony: um novo algoritmo estocástico de agrupamento de dados

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: AGUIAR, José Domingos Albuquerque lattes
Orientador(a): SOUZA, Adauto José Ferreira de
Banca de defesa: CORDEIRO, Gauss Moutinho, MELO, Silvio de Barros
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Biometria e Estatística Aplicada
Departamento: Departamento de Estatística e Informática
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5006
Resumo: In this work we present a new data cluster algorithm based on social behavior of ants which applies Monte Carlo simulations in selecting the maximum path length of the ants. We compare the performance of the new method with the popular k-means and another algorithm also inspired by the social ant behavior. For the comparative study we employed three data sets from the real world, three deterministic artificial data sets and two random generated data sets, yielding a total of eight data sets. We find that the new algorithm outperforms the others in all studied cases but one. We also address the issue concerning about the right number of groups in a particular data set. Our results show that the proposed algorithm yields a good estimate for the right number of groups present in the data set.