Uma generalização da distribuição do índice de diversidade generalizada por Good com aplicação em Ciências Agrárias

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: SANTOS, Vanessa Kelly dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5372
Resumo: A diversidade como um conceito foi inicialmente introduzida por Williams em Fisher et al. (1943). Mais tarde, Good (1953, 1982) propôs um índice generalizado que incluía como casos especiais os índices de Shannon e o de Simpson. Baczkowski et al. (1997, 1998) propuseram generalizar essa generalização derivando os quatro primeiros momentos e obtendo assim uma distribuição para o índice antes generalizado por Good (BACZKOWSKI et al., 2000). Sendo assim, apresenta-se uma nova generalização que, além de ter os índices de Shannon e Simpson como casos especiais, engloba índices mais gerais como o não familiar (PATIL & TAILIIE, 1982). Os momentos de h(a,b,d) aqui apresentados estendem os resultados apresentados em Baczkowski et al. e Bowman et al. para uma classe de índices de diversidade mais geral, concluindo-se então que enquanto a distribuição do índice de Shannon pode ser aproximado por uma distribuição Gaussiana, caso haja diferença entre abundância de espécies, para valores mais gerais de (a,b,d), sugere-se uma distribuição do tipo I como sendo a mais apropriada. Os resultados obtidos são tão consistentes quanto os de trabalhos que lidam com populações reais como em Heip & Engels (1974), principalmente quando examina-se o índice de Shannon.