Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
FERRAZ, Nadja Vanessa de Almeida
 |
Orientador(a): |
GOMES FILHO, Manoel Adrião |
Banca de defesa: |
SILVA JUNIOR, Valdemiro Amaro da,
MAIA, Maria de Mascena Diniz,
AREIAS, Madalena Carneiro da Cunha,
PAIM, Ana Paula Silveira |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biotecnologia (Renorbio)
|
Departamento: |
Rede Nordeste de Biotecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7173
|
Resumo: |
Glutathione (GSH) is the major low molecular weight thiol found in human cells, whose function is related to the biotransformation and elimination of xenobiotics, and protection of cells against oxidative stress. It has been found that a decrease in their physiological levels may be indicative of several diseases, standing out as an important biomarker. Several techniques are used to detect glutathione, as in the case of liquid chromatography. However, the electrochemical sensors method has been of increasing interest. Recently, the contribution of nanomaterials in the manufacture of these devices has been translated into an increase in the reproducibility and reach of low detection limits, highlighting themselves as promising tools for clinical diagnosis. In this work, two different sensors based on nanomaterials were developed for the detection of the GSH. The first sensor was composed of a gold electrode modified with a film based on the metal-organic framework copper (II) -benzene-1,3,5-tricarboxylate (CuBTC) and the acrylamide sodium acrylate copolymer (CuBTC/EAu). Electrochemical measurements were performed using the cyclic voltammetry method in an electrochemical cell, using silver/silver chloride (Ag/AgCl(KClsat)) as a reference electrode, platinum wire as an auxiliary electrode, and the CuBTC/EAu sensor as the working electrode. According to the results, the developed sensor exhibited a good electrocatalytic activity for the glutathione oxidation, in a potential of 0,41 V, with a low detection limit (0,03 μmol L-1), and a linear range operating range of 0,05 – 2 μmol L-1 of GSH and a response time of 15 minutes. The second sensor deals with the electrosynthesis of a nanocomposite based on CuBTC and gold nanoparticles stabilized with PVP, which was denominated Au@CuBTC. The morphological and structural characteristics of the new compound were investigated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), diffraction Xray powder (XRPD) and absorption spectroscopy in the infrared region (FTIR) and its application as an electrochemical sensor for GSH quantification was evaluated by square wave voltammetry. In accordance with the results, it was observed that the use of nanoparticles in the structure of the metal-organic framework significantly increased the sensitivity and the response time of the electrode. The analytical curve of the sensor showed a linear response range between 10 - 40 μmol L-1 of GSH, and a detection limit of 0,3 μmol L-1, with response time of 60 seconds. The proposed sensors are presented as an innovative technology and open paths for applications of metal organic frameworks in electrocatalysis and the construction of attractive sensors for the detection of glutathione in biological fluids. |