Desenho de polígonos e sequenciamento de blocos de minério para planejamento de curto prazo procurando estacionarização dos teores

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Toledo, Augusto Andres Torres
Orientador(a): Costa, Joao Felipe Coimbra Leite
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/180128
Resumo: O planejamento de curto prazo em minas a céu aberto exige a definição de poligonais, que representam os sucessivos avanços de lavra. As poligonais, tradicionalmente, são desenhadas em um processo laborioso na tentativa de delinear como minério em qualidade e quantidade de acordo com os limites determinados. O minério delimitado deve apresentar a menor variabilidade em qualidade possível, com o objetivo de maximizar a recuperação na usina de processamento. Essa dissertação visa desenvolver um fluxo do trabalho para definir poligonais de curto prazo de forma automática, além disso, sequenciar todos os blocos de minério de cada polígono de modo a definir uma sequência interconectada lavrável de poligonais. O fluxo do trabalho foi aplicada à incerteza de teores, obtida através de simulações estocásticas. Algoritmos genéticos foram desenvolvidos em linguagem de programação Python e implementados na forma de plug-in no software geoestatístico Ar2GeMS. Múltiplas iterações são criadas para cada avanço individual, gerando regiões (ou poligonais). Então, a região que apresenta menor variabilidade de teores é selecionada. A distribuição de probabilidade dos teores dos blocos em cada avanço é comparada com a distribuição global de teores, calculada a partir de todos os blocos do corpo de minério. Os resultados mostraram que os teores dos blocos abrangidos pelas poligonais criadas dessa forma apresentam teores similares à distribuição de referência, permitindo o sequenciamento de lavra com distribuição de teores mais próximo possível da distribuição global. Modelos equiprováveis permitem avaliar a incerteza associada à solução proposta.