Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Barros, Rhuan Paulo Lopes |
Orientador(a): |
Wives, Leandro Krug |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/234492
|
Resumo: |
Existe uma preocupação crescente de que a Justiça do Trabalho brasileira esteja demasi adamente inclinada a proteger empregados em relação a empregadores. Além disso, as próprias empresas nas suas relações empregado-empregador encontram-se inseguras em relação a quais decisões serão tomadas pelos magistrados em seus processos judiciais. Por outro lado, novas soluções tecnológicas estão sendo implementadas com intuito de aumentar a eficiência judiciária brasileira, como, por exemplo, Processo Judicial Eletrônico (PJe). Esse sistema permite a tramitação completa do processo judicial de maneira digital, contendo atualmente milhões de ações em tramitação. Entretanto, a exploração dessa massa de documentos judiciais não é trivial, pois tais documentos encontram-se disponibilizados em texto puro sem o enriquecimento necessário para a extração de conhecimento de valor. Dessa maneira, a presente pesquisa empregou técnicas de Aprendizado de Máquina Supervisionado a fim de verificar se seria possível observar eventual tendência de julgamento de determinados tribunais utilizando métodos computacionais. Desse modo, foi desenvolvida uma base de dados padrão-ouro a qual foi utilizada para a realização de testes, e também foi desenvolvida automaticamente uma base de treinamento por meio de técnica de Supervisão Fraca. Após, uma base de decisões judiciais de mais de 20 mil documentos foi classificada utilizando um modelo treinado com o algoritmo Gradient Boosting o qual obteve 92% na métrica F1 macro. Assim, foi possível observar diferença estatística na proporção de julgamentos a favor dos empregados em ambos os tribunais. |