Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Nunes, Luciana Neves |
Orientador(a): |
Victora, Cesar Gomes |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/122657
|
Resumo: |
Em estudos epidemiológicos. Os desfechos são freqüentemente medidos em escalas ordinais, entretanto são analisados por técnicas tradicionais. como a reg ressão logística que requer desfecho binário. Consequentemente. informações importantes podem ser perdidas devido a arbitrariedade na escolha do ponto de corte. Modelos de regressão para respostas ordinais têm sido desenvolvidos e têm vantagens de reter a ordinalidade dos dados e fornecer estimativas interpretáveis para os epidemiologistas. Esse artigo descreve o modelo de odds proporcionais proposto por McGullagh e o aplica aos dados da coorte de cnanças nascidas em Pelotas em 1993. usando o pacote estatístico SAS. O objetivo desse artigo foi comparar os resultados do modelo de odds proporcionais e da regressão logística tradicional usando diferentes pontos de corte. O desfecho foi déficit de estatura para idade expressa em escore-z. com três níveis ordinais. Concluiu-se que o modelo de odds proporcionais produz uma estimativa interpretável. similar a uma razão de odds. que sumariza o efeito sobre todos pontos de corte. Na presente análise. as estimativas pontuais resultantes da regressão ordinal foram similares ás obtidas através da regressão logística tradicional usando o ponto de corte do escore-z em -1. Entretanto, a regressão ordinal produziu intervalos de confiança menores (e, portanto, aumento do poder estatístico), evitando a arbitrariedade de ter um único ponto de corte. Uma limitação para uso mais amplo do modelo ordinal é a falta de pacotes estatísticos que o incluam. |