Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Cristimann, Nathália Mariath |
Orientador(a): |
Idiart, Marco Aurelio Pires |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/206583
|
Resumo: |
Há evidências de que diferentes redes neuronais cerebrais podem ter formas distintas de manter informações, tanto em termos de mecanismo quanto de codificação. Em particular, quando se modela a função de memória no cérebro, dois referenciais teóricos são frequentemente usados: redes atratoras recorrentes e buffers de memória de trabalho baseados na biestabilidade. Neste trabalho, propomos estudar o acoplamento funcional entre diferentes mecanismos de armazenamento e processamento de informação, focalizando o caso especial de uma arquitetura neural composta de dois buffers de memória de trabalho e uma rede recorrente (RNN) que é capaz de manter memórias de longo prazo como atratores. A sequência temporal que chega do buffer de entrada é armazenada como um padrão espacial na RNN, e depois decodificada como um padrão temporal no buffer de saída. Analisamos a questão que diz respeito a possibilidade de uma estrutura de rede aleatória na RNN ser suficiente para garantir a transferência de informação entre os dois buffers. Exploramos quatro modelos de conectividade aleatória: Erdös-Rényi (ER), Watts-Strogatz (WS), Newman-Watts-Strogatz (NWS) e Barabási-Albert (BA). Usando como métrica para o erro de codificação a distância de edição entre as sequências de entrada e saída, mostramos que os modelos de conectividade que correspondem a redes com propriedades de pequeno-mundo são mais eficientes do que os outros modelos. |