Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Silveira, Alexandre |
Orientador(a): |
Erichsen Junior, Rubem |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/164875
|
Resumo: |
Com o avanço das técnicas analíticas, tem sido possível estudadar redes neurais atratoras onde cada unidade de processamento é conectada com um número finito de vizinhos, sendo que esse número independe do tamanho do sistema. Aplicamos essas técnicas ao estudo de redes atratoras com padrões que possuem uma quebra de simetria sobre o número de bits ativos e quiscentes. O objetivo deste trabalho é estudar a capacidade da rede neural em armazenar padrões com atividade não nula, uma vez que a conectividade por neurônio é finita. Inicialmente, apresentamos os modelos predecessores de redes atratoras, como o modelo de Hopfield e os modelos de Amit, Gutfreund e Sompolinsky. Em tais modelos, o aprendizado é definido através de modificações sinápticas, inspiradas nas ideias de Hebb. Mostramos como é estimada a capacidade da rede. Mencionamos a introdução de uma função de energia para o sistema, que permite uma ligação com estudo de sistemas magnéticos através da mecânica estatística. Apresentamos também regras de aprendizado para lidar com padrões com atividade não nula. Num segundo momento, aplicamos o método de réplicas, utilizado para tratar sistemas desordenados, ao problema da rede atratora com conectividade e atividade dos padrões finitas. Utilizamos o formalismo de funções de ordem e fazemos uso do conceito de sub-redes, que permite particionar o grafo de acordo com os padrões a serem armazenados em cada neurônio. Obtemos, assim, uma função de ordem por sub-rede que contém toda informação sobre o estado do sistema. Aplicando o ansatz de simetria de réplicas, é possível derivar distribuições autoconsistentes dos campos locais para cada sub-rede. Tais distribuições passam a fornecer toda informação necessária para calcularmos os observáveis relevantes. As distribuições são calculadas numericamente a partir do método da dinâmica de populações. Em seguida, traçamos diagramas de fases para três regras de aprendizado. A partir desses, estimamos a capacidade, temperatura e atividade críticas. Observa-se a presença de fases de vidro de spin, transições decontínuas e pontos tricríticos. |