ONNIS-GI: uma rede neural oscilatória para segmentação de imagens implementada em arquitetura maciçamente paralela

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Fernandes, Dênis
Orientador(a): Navaux, Philippe Olivier Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/3956
Resumo: A presente tese apresenta a concepção de uma rede neural oscilatória e sua realização em arquitetura maciçamente paralela, a qual é adequada à implementação de chips de visão digitais para segmentação de imagens. A rede proposta, em sua versão final, foi denominada ONNIS-GI (Oscillatory Neural Network for Image Segmentation with Global Inhibition) e foi inspirada em uma rede denominada LEGION (Locally Excitatory Globally Inhibitory Oscillator Network), também de concepção recente. Inicialmente, é apresentada uma introdução aos procedimentos de segmentação de imagens, cujo objetivo é o de situar e enfatizar a importância do tema abordado dentro de um contexto abrangente, o qual inclui aplicações de visão artificial em geral. Outro aspecto abordado diz respeito à utilização de redes neurais artificiais em segmentação de imagens, enfatizando as denominadas redes neurais oscilatórias, as quais têm apresentado resultados estimulantes nesta área. A implementação de chips de visão, integrando sensores de imagens e redes maciçamente paralelas de processadores, é também abordada no texto, ressaltando o objetivo prático da nova rede neural proposta. No estudo da rede LEGION, são apresentados resultados de aplicações originais desenvolvidas em segmentação de imagens, nos quais é verificada sua propriedade de separação temporal dos segmentos. A versão contínua da rede, um arranjo paralelo de neurônios baseados em equações diferenciais, apresenta elevada complexidade computacional para implementação em hardware digital e muitos parâmetros, com procedimento de ajuste pouco prático. Por outro lado, sua arquitetura maciçamente paralela apresenta-se particularmente adequada à implementação de chips de visão analógicos com capacidade de segmentação de imagens. Com base nos bons resultados obtidos nas aplicações desenvolvidas, é proposta uma nova rede neural, em duas versões, ONNIS e ONNIS-GI, as quais suplantam a rede LEGION em diversos aspectos relativos à implementação prática. A estrutura dos elementos de processamento das duas versões da rede, sua implementação em arquitetura maciçamente paralela e resultados de simulações e implementações em FPGA são apresentados, demonstrando a viabilidade da proposta. Como resultado final, conclui-se que a rede ONNIS-GI apresenta maior apelo de ordem prática, sendo uma abordagem inovadora e promissora na solução de problemas de segmentação de imagens, possuindo capacidade para separar temporalmente os segmentos encontrados e facilitando a posterior identificação dos mesmos. Sob o ponto de vista prático, a nova rede pode ser utilizada para implementar chips de visão digitais com arquitetura maciçamente paralela, explorando a velocidade de tais topologias e apresentando também flexibilidade para implementação de procedimentos de segmentação de imagens mais sofisticados.