Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
GOMES, Daniel de Filgueiras |
Orientador(a): |
ARAÚJO, Aluizio Fausto Ribeiro |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/2244
|
Resumo: |
A segmentação é uma parte fundamental do processo de particionamento do espaço de dados em regiões salientes e é um pré-requisito para processos subsequentes como reconhecimento de objetos e interpretação de cena. A etapa de segmentação de imagens e a eficiência com que é realizada afeta diretamente a performance de um sistema automático de análise de imagem. A grande maioria dos algoritmos de segmentação existentes trabalha com características como cor e luminosidade sem levar em consideração os micro-padrões de textura formados pela combinação destas características. Inicialmente motivada como ferramenta de segmentação de paisagens em fotos aéreas e de satélite a análise de textura tem sido estudada por um longo período de tempo usando muitas abordagens distintas. Vários métodos realizam a análise de textura sobre estatísticas de segunda ordem de pixels ou componentes espectrais presentes na imagem. Estudos sobre padrões de textura presentes em imagens tem revelado que a informação sobre a textura de um determinado objeto pode ser tão específica a ponto de poder ser utilizada, não só para a discriminação de regiões, mas também para a identificação de objetos em uma cena. O presente trabalho discute as diversas questões e problemas envolvendo o processamento e a discriminação de texturas em imagens digitais e propõe métodos de segmentação utilizando uma abordagem não-supervisionada com redes neurais artificiais |