Pré-processamento, extração de características e classificação offline de sinais eletroencefalográficos para uso em sistemas BCI

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Machado, Juliano Costa
Orientador(a): Balbinot, Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/101210
Resumo: O uso de sistemas denominados Brain Computer Interface, ou simplesmente BCI, para controle de dispositivos tem gerado cada vez mais trabalhos de análise de sinais de EEG, principalmente devido ao fato do desenvolvimento tecnológico dos sistemas de processamento de dados, trazendo novas perspectiva de desenvolvimento de equipamentos que auxiliem pessoas com debilidades motoras. Neste trabalho é abordado o comportamento dos classificadores LDA (Discriminante Linear de Fisher) e o classificador Naive Bayes para classificação de movimento de mão direita e mão esquerda a partir da aquisição de sinais eletroencefalográficos. Para análise destes classificadores foram utilizadas como características de entrada a energia de trechos do sinal filtrados por um passa banda com frequências dentro dos ritmos sensório-motor e também foram utilizadas componentes de energia espectral através do periodograma modificado de Welch. Como forma de pré-processamento também é apresentado o filtro espacial Common Spatial Pattern (CSP) de forma a aumentar a atividade discriminativa entre as classes de movimento. Foram obtidas taxas de acerto de até 70% para a base de dados geradas neste trabalho e de até 88% utilizando a base de dados do BCI Competition II, taxas de acertos compatíveis com outros trabalhos na área.