Contrast enhancement and exposure correction using a structure-aware distribution fitting

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Barbosa, Matheus Rocha
Orientador(a): Scharcanski, Jacob
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/258385
Resumo: Realce de contraste e correção de exposição são úteis em aplicações domésticas e técnicas, no segundo caso como uma etapa de pré-processamento para outras técnicas ou para ajudar a observação humana. Frequentemente, uma transformação localmente adaptativa é mais adequada para a tarefa do que uma transformação global. Por exemplo, objetos e regiões podem ter níveis de iluminação muito diferentes, fenômenos físicos podem comprometer o contraste em algumas regiões mas não em outras, ou pode ser desejável ter alta visibilidade de detalhes em todas as partes da imagem. Para esses casos, métodos de realce de imagem locais são preferíveis. Embora existam muitos métodos de realce de contraste e correção de exposição disponíveis na literatura, não há uma solução definitiva que forneça um resultado satisfatório em todas as situações, e novos métodos surgem a cada ano. Em especial, os métodos tradicionais baseados em equalização adaptativa de histograma sofrem dos efeitos checkerboard e staircase e de excesso de realce. Esta dissertação propõe um método para realce de contraste e correção de exposição em imagens chamado Structure-Aware Distribution Stretching (SADS). O método ajusta regionalmente à imagem um modelo paramétrico de distribuição de probabilidade, respeitando a estrutura da imagem e as bordas entre as regiões. Isso é feito usando versões regionais das expressões clássicas de estimativa dos parâmetros da distribuição, que são obtidas substituindo a mé- dia amostral presente nas expressões originais por um filtro de suavização que preserva as bordas. Após ajustar a distribuição, a função de distribuição acumulada (CDF) do modelo ajustado e a inversa da CDF da distribuição desejada são aplicadas. Uma heurística ciente de estrutura que detecta regiões suaves é proposta e usada para atenuar as transformações em regiões planas. SADS foi comparado a outros métodos da literatura usando métricas objetivas de avaliação de qualidade de imagem (IQA) sem referência e com referência completa nas tarefas de realce de contraste e correção de exposição simultâneos e na tarefa de defogging/dehazing. Os experimentos indicam um desempenho geral superior do SADS em relação aos métodos comparados para os conjuntos de imagens usados, de acordo com as métricas IQA adotadas.