Formulação hidrodinâmica para a equação de Schrödinger não-linear e não-local em condensados de Bose-Einstein

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Vidmar, Rodrigo
Orientador(a): Haas, Fernando
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/163724
Resumo: Será explorada a versão hidrodinâmica da equação de Schrödinger não-linear e não-local, descrevendo condensados de Bose-Einstein com auto-interações de longo alcance. Tais sistemas têm despertado interesse tendo em vista a busca da realização da condensação de Bose-Einstein sem necessidade de um potencial externo confinante e nos quais as interações atômicas locais não são suficientes. Para obter a descrição hidrodinâmica, a transformação de Madelung para a função de onda será utilizada, reduzindo o problema a uma equação da continuidade e a uma equação de transporte de momentum. Esta última é similar à equação de Euler em fluidos ideais, porém contendo um potencial quântico efetivo e um termo não local, o qual advém da interação atômica. Tais equações de fluido traduzem, respectivamente, a conservação da probabilidade e do momentum total. O método hidrodinâmico permitirá o estudo de excitações elementares, entre os quais os modos de Bogoliubov, segundo uma abordagem macroscópica.