Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Ferreira, Henrique Fabrelli |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052016-171955/
|
Resumo: |
Neste trabalho de mestrado é estudada a estabilidade de vórtices em condensados de Bose-Einstein com interação atrativa entre os átomos através da solução numérica da equação de Gross-Pitaevskii. Inicialmente são reproduzidos resultados da literatura, nos quais são estudados vórtices em condensados bidimensionais atrativos com potencial interatômico homogêneo em todo o condensado. A estabilidade de tais sistemas é inferida através da solução numérica das equações de Bogoliubov-de Gennes e da evolução temporal dos vórtices. Demonstra-se que esses vórtices são estáveis, até um certo número crítico de átomos, apenas para valores de vorticidade S=1. Em seguida foi proposto um modelo no qual a interação entre os átomos é espacialmente modulada. Neste caso é possível demonstrar que vórtices com valores de vorticidade de até S=6, pelo menos, são estáveis. Finalmente é estudada a estabilidade de vórtices em condensados tridimensionais atrativos, novamente com potencial interatômico homogêneo em todo o condensado. Assim como no caso bidimensional mostra-se que tais vórtices são estáveis para valores de vorticidade de S=1. Espera-se em breve estudar a estabilidade de vórtices em condesados tridimensionais com potencial de interação espacialmente modulado. |