Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Basso, Maik |
Orientador(a): |
Freitas, Edison Pignaton de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/179536
|
Resumo: |
A computação visual é uma área do conhecimento que estuda o desenvolvimento de sistemas artificiais capazes de detectar e desenvolver a percepção do meio ambiente através de informações de imagem ou dados multidimensionais. A percepção visual e a manipulação são combinadas em sistemas robóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um laço de controle de feedback visual. Neste contexto, existe um interesse crescimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs), também conhecidos como drones. Essas técnicas são aplicadas para posicionar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões para vigilância aérea ou pontos de interesse. Os sistemas de computação visual geralmente tomam três passos em sua operação, que são: aquisição de dados em forma numérica, processamento de dados e análise de dados. A etapa de aquisição de dados é geralmente realizada por câmeras e sensores de proximidade. Após a aquisição de dados, o computador embarcado realiza o processamento de dados executando algoritmos com técnicas de medição (variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou monitoramento (pessoas, veículos ou animais). Os dados processados são analisados e convertidos em comandos de decisão para o controle para o sistema robótico autônomo Visando realizar a integração dos sistemas de computação visual com as diferentes plataformas de VANTs, este trabalho propõe o desenvolvimento de um framework para controle de missão e guiamento de VANTs baseado em visão computacional. O framework é responsável por gerenciar, codificar, decodificar e interpretar comandos trocados entre as controladoras de voo e os algoritmos de computação visual. Como estudo de caso, foram desenvolvidos dois algoritmos destinados à aplicação em agricultura de precisão. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo realiza a identificação das linhas de plantas para realizar o guiamento dos VANTs sobre a plantação. O desempenho do framework e dos algoritmos propostos foi avaliado e comparado com o estado da arte, obtendo resultados satisfatórios na implementação no hardware embarcado. |