Pouso autônomo de VANTs baseado em rede neural artificial supervisionada por lógica fuzzy

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Souza, João Pedro Carvalho de lattes
Orientador(a): Marcato, André Luís Marques lattes
Banca de defesa: Barbosa, Bruno Henrique Groenner lattes, Aguiar, Eduardo Pestana de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica
Departamento: Faculdade de Engenharia
País: Brasil
Palavras-chave em Português:
RNA
UAV
ANN
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/6512
Resumo: Os Veículos Aéreos Não Tripulados (VANTs) demonstram-se como tecnologia promissora visto sua alta aplicabilidade e custos reduzidos. Assim, esses veículos são estudados por engenheiros e pesquisadores que visam, além de aplicá-los, melhorar seu desempenho, segurança e torná-los autônomos e de fácil interação. Etapas de voos como decolagem, subida, cruzeiro, descida e aterrissagem são objetos de estudos para melhoria de perfomance dessas aeronaves. A aterrissagem é uma etapa delicada para o veículo, cuja operação inadequada pode resultar em acidentes e perdas. Com esse intuito, a presente dissertação propõe uma técnica para o pouso autônomo/assistido de VANTs embarcado ao veículo, sem a necessidade de estações base de processamento. Para o sensoriamento, é utilizado o algoritmo de visão computacional denominado Ar Track Alvar para identificação de marcadores artificiais, utilizados como local de pouso. A configuração do local de pouso visa a aplicação da aterrissagem em alturas mais elevadas, pois são utilizados diferentes marcadores artificiais para a sua composição. O algoritmo de pouso também é uma contribuição do presente trabalho, no qual a execução é realizada por uma Rede Neural Artificial (RNA), do tipo Multilayer Perceptron, cujo treinamento é supervisionado por uma lógica fuzzy que utiliza a inferência Mamdani. A utilização do fuzzy torna-se viável devido a sua característica não determinística, sendo menos susceptível a ruídos de sensoriamento. Outro ponto importante é a não necessidade de se ajustar ganhos para o procedimento para cada aeronave usada, tornando-se o processo perigoso e trabalhoso. Esse revés é visto em controladores clássicos como o PID. Apesar das vantagens da lógica fuzzy, essa se mostra computacionalmente custosa devido a seu processo Mamdani. Como uma RNA treinada é um conjunto de operações matriciais, é proposto o treinamento da mesma supervisionada pelo algoritmo fuzzy já funcional. Assim se reduz a complexidade computacional do algoritmo embarcado facilitando o processsamento de imagem. O firmware de aterrissagem proposto é desenvolvido sobre o framework Robot Operation System (ROS) e focado para replicação em dispositivos reais e embarcados. Os resultados são apresentados em Software in the Loop (SITL) e em experimentos reais em ambientes externos para locais de pouso estáticos e dinâmicos. A comparação de desempenhos dos algoritmos é mostrada. O desempenho atingido foi satisfatório e a capacidade da RNA, além da redução da complexidade computacional, foram verificadas.