Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Waller, Dalciana Bressan |
Orientador(a): |
Trierweiler, Jorge Otávio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/109148
|
Resumo: |
A identificação de sistemas é uma etapa de fundamental importância para o entendimento de dinâmicas e o projeto de controladores. Diversas técnicas de identificação de sistemas LTI são consolidadas para uso, mas ainda apresentam lacunas para identificar modelos a partir de dados corrompidos com distúrbios não medidos. Outro aspecto é que características previamente conhecidos do sistema (p.ex., resposta inversa, sobre-elevação, etc.), nem sempre podem ser incorporadas ao modelo para auxiliar na obtenção de um modelo com essas metodologias. Como proposta para suprir essas limitações, é apresentada nesse trabalho, a metodologia Splid, que considera informações previamente conhecidas sobre o sistema e promove a utilização de curvas splines de interpolação para prever o comportamento da resposta de saída de diferentes sistemas LTI a uma perturbação tipo degrau, variando a altura dos nós da spline, variável a ser encontrada pela formação de um problema de otimização. Primeiramente foram realizados testes com sistemas de dinâmica conhecida, explorando graficamente as curvas de saída frente à perturbação tipo degrau unitário, obtidas aplicando-se diferentes tipos de splines, número de nós e dos parâmetros específicos de splines, com o intuito de balizar os parâmetros do algoritmo. Em seguida, a metodologia ajustada foi aplicada para identificar plantas com dinâmica conhecida, para fins de verificação da eficácia do método. Diferentes formulações de função objetivo foram testadas na etapa de identificação e validação dos dados, verificando o efeito da minimização do quadrado da derivada do erro e comparando com a abordagem tradicional, que contempla apenas o erro quadrático. Para consolidar os estudos desenvolvidos nestas etapas, a metodologia Splid foi aplicada na identificação do modelo de uma planta real de 2 tanques com aquecimento, cujos dados apresentavam distúrbios não compensados. |