Splines e modelagem geométrica.
Ano de defesa: | 1996 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/8547 |
Resumo: | Splines, que podem ser matematicamente descritos, possuem propriedades muito adequadas para modelagem de curvas. Uma curva definida por uma função arbtrária / sob certas condições pode ser bem aproximada por splines. Por outro lado, dada uma curva cuja função / que a define e desconhecida, e possível construir, a partir de um numero modesto de pontos da curva, uma boa aproximação de / usando splines. Ainda mais, as aproximações construídas usando splines podem preservar muitas propriedades matemáticas e geométricas das curvas. Em computação gráfica a incorporação dessas propriedades implica na fidelidade do objeto modelado. Na busca dessa fidelidade, muitos splines foram propostos: Bsplines, Curvas de Bezier, (3-splincs, u-splines, r-splines, WF-splines, y-splines, etc. Este trabalho tenta responder a questão quanto a possibilidade ou não de estudar os splines de forma unificada ao invés de estudar cada tipo isoladamente. |