Classificação binária de movimentos imaginários da flexão da mão capturados por eletroencefalografia através de um sistema neuro-fuzzy

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Badaraco, Fabiano Roméro de Souza
Orientador(a): Balbinot, Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/204507
Resumo: Este trabalho consiste na avaliação do método Neuro-Fuzzy associado ao Substractive Clustering como classificador de sinais de eletroencefalografia para sistemas Brain Computer Interface (BCI), utilizando a combinação de três diferentes características extraídas deste sinal, durante a imaginação do movimento de flexão da mão direita ou esquerda. Para isto é avaliado a ocorrência dos fenômenos ERD e ERS, com o objetivo de determinar em qual segmentação no tempo devem ser extraídas as características do mesmo. Os sinais de Eletroencefalografia avaliados são provenientes do banco de dados do BCI Competition e de um ensaio adquirido no Laboratório de Instrumentação Eletroeletrônica & Biosinais da UFRGS. O método proposto é testado e comparado com outro método de aprendizagem de máquina denominado Multi Layer Percetron (MLP) treinado com o algoritmo Levenberg-Marquardt (LM), com o objetivo de conhecer qual o método e a combinação de características apresenta a maior taxa de acerto. Em sequência, estas taxas de acerto são comparadas com as taxas de acerto de outros trabalhos da área. Os métodos propostos neste trabalho alcançaram uma taxa de acerto máxima de 92,6±1,1% para a ANFIS SC e 87,9±1,5% para a MLP LM. Por fim, é apresentada uma análise estatística dos resultados alcançados.