Improving digital photography : revisiting core aspects through a deep-learning lens

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Henz, Bernardo
Orientador(a): Oliveira Neto, Manuel Menezes de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/217574
Resumo: Esta tese revisita aspectos fundamentais da fotografia computacional, enquanto os aperfeiçoa utilizando estratégias de deep-learning do estado da arte. Esta tese propõe duas técnicas que aprimoram o pipeline de fotografia digital. Especificamento, nós mostramos como melhorar o processo de aquisição de imagens e o tratamento de ruído natural. Para aquisição de imagens, nós apresentamos uma técnica inovadora baseada em Convolutional Neural Networks que otimiza conjuntamente o design de color filter arrays e o método de demosaicing. Os modelos treinados proporcionam reconstruções de alta qualidade, alcançando valores de PSNR (Peak Signal-to-Noise Ratio) maiores em diversos datasets, superando técnicas anteriores tanto para o caso de imagens sem ruído quanto para imagens ruidosas (demosaicing+denoising). Para o tratamento de ruído, nós propomos uma arquitetura baseada em GANs (Generative Adversarial Networks) que é capaz de ajustar o nível de ruído presente em uma imagem. Através de testes de validação, nós mostramos que o ruído sintetizado por nossos modelos é muito mais próximos que o encontrado em fotografias reais quando comparado com os métodos existentes (Gaussiano/Poisson). Nósavaliamos o uso de nossos modelos generativos no treinamento de denoisers, mostrando que os denoisers treinados utilizando imagens sintetizadas pela nossa ténica conseguem uma performance superior em benchmarks de remoção de ruído de images naturais. Visto que nossas técnicas melhoram aspectos importante do pipeline de imagens digitais, elas têm o potencial de melhorar a qualidade geral de fotografias digitais.