Classificação da Disponibilidade de Vagas de Estacionamento Usando Aprendizagem Profunda

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: CALEBE PEREIRA LEMOS
Orientador(a): Wesley Nunes Goncalves
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Fundação Universidade Federal de Mato Grosso do Sul
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/8651
Resumo: The emission from motor vehicles is one of the most significant for atmospheric pollution. In this context, knowing the availability of parking spaces plays an important role in reducing air pollution, as the search time is shorter. In addition, these systems can contribute to improving traffic efficiency, as they prevent drivers from circulating unnecessarily in search of a parking space. However, automating this task presents challenges, mainly related to image capture with different lighting, weather seasons and obstructed view. This work aims to evaluate recent deep learning methods for classifying available parking spaces from images. The results highlighted Res2Net, with accuracy greater than 99% in experiments with the public dataset (CNR-Park+EXT) and 100% for the constructed dataset (UFMS-Park).