Sistemas de funções iteradas e um exemplo de uma função continua que e nao diferenciavel em todos os pontos

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Fortes, Maria Helena Mussi
Orientador(a): Lopes, Artur Oscar
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/126158
Resumo: O objetivo deste trabalho é mostrar a existência de uma função contínua que é não-diferenciável em todo ponto. Seguiremos aqui a exposição de H. Katsuura (Amer. Math. Monthly (1991)) e que utiliza conceitos como sistemas de funções iteradas (iterated function systems) e o espaço de Hausdorff de subconjuntos compactos de um espaco métrico completo. Para ter uma descrição completa do assunto, vamos apresentar uma exposição sistemática de tais conceitos. Na Seção 1 apresentamos o Espaço de Hausdorff dos conjuntos compactos. Na Seção 2 mostramos que um certo sistema iterado de funções determina uma contração no espaço de Hausdorff. Finalmente na Seção 3 mostramos o exemplo de uma função contínua que não é diferenciável em nenhum ponto. No apêndice apresentamos uma breve introdução aos conceitos utilizados de espaços métricos e a prova do teorema da contração.