Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Agnes, Everton João |
Orientador(a): |
Brunnet, Leonardo Gregory |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/108536
|
Resumo: |
O encéfalo, através de complexa atividade elétrica, é capaz de processar diversos tipos de informação, que são reconhecidos, memorizados e recuperados. A base do processamento é dada pela atividade de neurônios, que se comunicam principalmente através de eventos discretos no tempo: os potenciais de ação. Os disparos desses potenciais de ação podem ser observados por técnicas experimentais; por exemplo, é possível medir os instantes dos disparos dos potenciais de ação de centenas de neurônios em camundongos vivos. No entanto, as intensidades das conexões entre esses neurônios não são totalmente acessíveis, o que, além de outros fatores, impossibilita um entendimento mais completo do funcionamento da rede neural. Desse modo, a neurociência computacional tem papel importante para o entendimento dos processos envolvidos no encéfalo, em vários níveis de detalhamento. Dentro da área da neurociência computacional, o presente trabalho aborda a aquisição e recuperação de memórias dadas por padrões espaciais, onde o espaço é definido pelos neurônios da rede simulada. Primeiro utilizamos o conceito da regra de Hebb para construir redes de neurônios com conexões previamente definidas por esses padrões espaciais. Se as memórias são armazenadas nas conexões entre os neurônios, então a inclusão de um período de aprendizado torna necessária a implementação de plasticidade nos pesos sinápticos. As regras de modificação sináptica que permitem memorização (Hebbianas) geralmente causam instabilidades na atividade dos neurônios. Com isso desenvolvemos regras de plasticidade homeostática capazes de estabilizar a atividade basal de redes de neurônios. Finalizamos com o estudo analítico e numérico de regras de plasticidade sináptica que permitam o aprendizado não-supervisionado por elevação da taxa de disparos de potenciais de ação de neurônios. Mostramos que, com uma regra de aprendizado baseada em evidências experimentais, a recuperação de padrões memorizados é possível, com ativação supervisionada ou espontânea. |