Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Schneider, Kleiton Andre |
Orientador(a): |
Castro, Manuela Longoni de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/16936
|
Resumo: |
Uma prática comum para resolver numericamente problemas de propagação de ondas num domínio ilimitado é baseada no truncamento do domínio infinito via uma fronteira artificial, definindo assim um dommínio computacional finito, usando condições de contorno especiais na fronteira, ditas absorventes, com a finalidade de minimizar as reflexões causadas pela imposição da fronteira artificial. Neste trabalho, faremos uma revisão bibliográfica acerca do desenvolvimento dessas condições de contorno absorventes para o problema de propagação de ondas, com o intuito de elucidar a derivação de novas condições de contorno aborventes. A maior parte do trabalho está baseado nas condições de contorno de Engquist e Majda [12], e de Higdon [32]. O modelo considerado aquié a equação da onda linear clássica. Além de apresentarmos os procedimentos para a formulação destas condições, abordaremos a fórmula de Diaz e Joly [9], que, graças ao método de Cagniard-De Hoop, conseguiram uma expressão explícita para a solução fundamental do problema associado à equação da onda bidimensional no meio-plano y>= 0, com as condições de contorno de Higdon. |