Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Franco, Guilherme Schvarcz |
Orientador(a): |
Silva Junior, Edson Prestes e |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/134342
|
Resumo: |
Fechamento de loops é um dos principais processos das estratégias de SLAM baseadas em grafos, usadas para estimar o erro de deslocamento acumulado à ser minimizado pela técnica. Neste sentido, boas correspondências de cenas permitem criar uma conexão entre dois nós do grafo que está sendo construído para representar o ambiente. Contudo, falsas correspondências podem levar essas estratégias a um estado irreversível de falsa representação do ambiente. Neste trabalho, um método robusto baseado em features que usa sequências de imagens para reconhecer áreas revisitadas é apresentado. Este método usa a abordagem de Bag-of-Words para reduzir efeitos de iluminação e uma ponderação TF-IDF para ressaltar as principais features que descrevem cada cena. Além disso, um algoritmo baseado na técnica de Mean Shift é usado sobre uma matriz de similaridade para identificar a possível trajetória seguida pelo robô e melhorar a detecção de fechamento de loop. O método apresentado foi testado em um ambiente aberto usando sequências de imagens coletadas com usando uma câmera de mão e um drone modelo Parrot ArDrone 2.0. |