Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Polêto, Marcelo Depólo |
Orientador(a): |
Verli, Hugo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/150648
|
Resumo: |
Métodos computacionais assumiram a partir de 1980, um papel de destaque no planejamento de novos fármacos, oferecendo abordagens racionais para reduzir o grau de incerteza na geração de novos compostos bioativos. Dentre estes métodos, destacam-se aqueles dependentes de campos de força, como o atracamento e a dinâmica molecular. Infelizmente, estes métodos exigem estratégias de parametrização capazes de lidar com a diversidade química associada ao planejamento de fármacos. Os esforços atuais neste sentido são focados em fase gasosa, como no caso do GAFF e MMFF94, Assim, o presente trabalho busca explorar a capacidade de um campo de força baseado em fase condensada, o GROMOS, na reprodução de propriedades fisico-químicas de anéis aromáticos comumente encontrados em fármacos. Assim, parâmetros ligados e de Lennard-Jones do GROMOS53a6 foram utilizados para a construção das topologias destas moléculas orgânicas, enquanto novos parâmetros coulômbicos e torsionais foram gerados. Em seguida, suas propriedades físico-químicas foram simuladas e comparadas aos respectivos valores experimentais, permitindo a determinação da qualidade de cada topologia. Até o momento, 41 moléculas foram parametrizadas com sucesso, levando a erros absolutos abaixo de 15% para densidade, entalpia de vaporização e capacidade térmica isobárica. A partir desta etapa de validação, os parâmetros obtidos foram aplicados no estudo de hexafirinas sintéticas em diferentes solventes e íons, acessando com sucesso a conformação e coordenação das moléculas envolvidas. Desta forma, os dados obtidos constituem-se em um benchmark para futuros estudos baseados no campo de força GROMOS, sugerindo seu potencial para estudos de moléculas orgânicas sintéticas em fase condensada. Abre-se, ainda, a perspectiva de emprego de técnicas de dinâmica molecular, com estes parâmetros, no estudo do perfil conformacional, dinâmica e flexibilidade de fármacos em solução. |