Cópulas, processos com longa dependência e decaimento da correlação em processos estocásticos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Pumi, Guilherme
Orientador(a): Lopes, Silvia Regina Costa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/115501
Resumo: Neste trabalho abordamos três assuntos importantes na área de Estatística Matemática, Análise de Séries Temporais e Processos Estocásticos, a saber, cópuias, processos com longa dependência e o decaimento da correlação em processos estocásticos. Nossa contribuição para a teoria de cópuias compreende a derivação e estudo das cópuias relacionadas com certos tipos de processos estocásticos obtidos a partir da iteração de uma transformação suave por partes à uma determinada variável aleatória inicial. Aplicações à estimação paramétrica em processos do t i p o estudado são considerados e simulações de Monte Cario são apresentadas. Nossa contribuição à teoria de processos com longa dependência pode ser dividida em duas frentes. Primeiramente, o problema de estimação semiparamétrica em processos multivariados apresentando longa dependência é estudado. Duas classes de estimadores para o vetor de diferenciação fracionária são introduzidas e suas propriedades assintóticas estudadas. Simulações de Monte Cario são realizadas para avaliar o desempenho dos estimadores na prática. Em um segundo momento, estudamos a interdependência das coordenadas em processos VARFIMA(0, d , 0) bidimensionais sob o ponto de vista da distância de Mallows e dor de Kendall sob diversas condições. O trabalho é baseado em simulações de Monte Cario e foca em uma possível relação entre a distância de Mallows, o vetor de diferenciação fracionária do tipo e grau de dependência induzido no ruído, bem como no comportamento das marginais do processo. Como aplicações, um estimador do vetor de diferenciação fracionária e um t e s t e para detectar a presença de coordenadas com longa dependência forte em processos VARF1MA(0, d, 0) de qualquer dimensão finita são introduzidos. Um estudo de Monte Cario específico é realizado para avaliar o desempenho tanto do estimador quanto do teste. Propriedades assintóticas do estimador para a distância de Mallows utilizado no trabalho também são estudadas. Finalmente, contribuímos para o estudo do decaimento da correlação em processos estocásticos investigando o problema de obter-se um determinado decaimento da correlação a partir da reparametrização de uma família de cópuias, dadas as marginais do processo. Como aplicações, uma metodologia geral de estimação de parâmetros, identificáveis pelo decaimento da autocovariância, em séries temporais é proposta e um método para a simulação de séries temporais com determinadas características é introduzido. A metodologia proposta ainda é aplicada à série temporal real do índice de ativos da S<SdP500.