Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Azevedo, Bárbara Brzezinski |
Orientador(a): |
Anzanello, Michel José |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/96638
|
Resumo: |
A manufatura de produtos customizados resulta em variedade de modelos, redução no tamanho de lotes e alternância frequente de tarefas executadas por trabalhadores. Neste contexto, tarefas manuais são especialmente afetadas por conta do processo de adaptação do trabalhador a novos modelos de produtos. Este processo de aprendizado pode ocorrer de maneira distinta dentro de um grupo de trabalhadores. Assim, busca-se o agrupamento dos trabalhadores com perfis similares de aprendizado, monitorando a formação de gargalos em linhas de produção constituídas por dissimilaridades de aprendizado em processos manuais. A presente dissertação apresenta abordagens para clusterização de trabalhadores baseadas nos parâmetros oriundos da modelagem de Curvas de Aprendizado. Tais parâmetros, os quais caracterizam o processo de adaptação de trabalhadores a tarefas, são transformados através da Análise de Componentes Principais e então utilizados como variáveis de clusterização. Na sequência, testam-se outras transformações nos parâmetros utilizando funções Kernel. Os trabalhadores são clusterizados através do método K-Means e Fuzzy C-Means e a qualidade dos agrupamentos formados é medida através do Silhouette Index. Por fim, sugere-se um índice de importância de variável baseado em parâmetros obtidos na Análise Componentes Principais com o objetivo de selecionar as variáveis mais relevantes para clusterização. As abordagens propostas são aplicadas em um processo da indústria calçadista, gerando resultados satisfatórios quando comparados a clusterizações realizadas sem a transformação prévia dos dados ou sem seleção das variáveis. |