Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Selau, Lisiane Priscila Roldão |
Orientador(a): |
Ribeiro, Jose Luis Duarte |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/12572
|
Resumo: |
A presente dissertação tem como objetivo propor uma sistemática para a construção de modelos de previsão de risco de crédito e também comparar o desempenho de três técnicas estatísticas multivariadas utilizadas para sua construção: análise discriminante, regressão logística e redes neurais. O método proposto (denominado Modelo PRC) é composto de seis etapas: (i) delimitação da população; (ii) seleção da amostra; (iii) análise preliminar; (iv) construção do modelo; (v) escolha do modelo e (vi) passos para implantação. O Modelo PRC foi aplicado em uma amostra de 17.005 clientes de uma rede de farmácias com crediário próprio. Os resultados encontrados demonstram uma superioridade das redes neurais em relação às outras duas técnicas, o que era esperado devido a sua abordagem nãolinear na combinação das variáveis. Considerando a venda anual aos clientes da base em estudo e utilizando o modelo neural desenvolvido, estima-se um acréscimo de 65% nos lucros. |