Predição para o uso da inteligência artificial no agronegócio na Caatinga

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Borba, Marcelo da Costa
Orientador(a): Machado, Joao Armando Dessimon
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/245283
Resumo: A ciência e a tecnologia, em diferentes formas, sempre exerceram um papel expressivo na solução de problemas, sendo usadas para o desenvolvimento de estratégias, produtos, métodos e ferramentas. Os avanços em ciência e tecnologia têm se mostrado promissores no intuito de aprimorar setores como o agronegócio. E essa visão tem sido justificada pelo constante avanço de dispositivos tecnológicos projetados para apresentar soluções aos problemas agrícolas. Sendo assim, este estudo tem por objetivo analisar o processo de inovação no contexto da Inteligência Artificial (IA), desde a produção do conhecimento científico até a fase de predição dessa tecnologia no agronegócio na Caatinga. Do ponto de vista dos aspectos metodológicos a pesquisa é classificada como exploratória, uma vez que essa investigação leva em consideração uma área na qual há pouco conhecimento acumulado e sistematizado. Em relação à técnica de pesquisa, é caracterizada como estudo de caso. Os resultados da aplicação dos métodos da IA no agronegócio no contexto geral apresentam diferentes abordagens como o uso de Visão de Máquina por meio de Sistema Agrícola Virtual, SVM e ELM na detecção precoce do patógeno de pragas e doenças; FIS e MLP para a exploração de culturas; propagação reversa para monitoramento dos limites da fazenda; ANN e MFNN para análise de estruturas de irrigação; e Árvore da Decisão e TDNN para a vigilância do rebanho. Com os dispositivos integrados no sistema de produção agrícola os sistemas das fazendas passam a oferecer recomendações e insights mais ricos para a tomada de decisão e melhoria da cadeia de suprimentos agrícola. Em relação ao levantamento das tecnologias atuais no agronegócio na Caatinga, o contexto local apresenta abordagens bem distintas, desde a utilização de técnicas de convivência com o semiárido como os métodos de manejo do solo, aproveitamento da água da chuva e preparo de ração animal. Já a análise do uso das tecnologias, o enfoco está na viabilidade da produção, diversificação e manejo da colheita em polos integrados de grande desenvolvimento tecnológico em polos de cultivo e manejo de culturas irrigadas. A perspectiva da adoção e o desenvolvimento de IA no agronegócio na Caatinga ainda se encontram em fase inicial, com os agentes buscando nas pesquisas, conhecer as oportunidades dessa tecnologia frente aos negócios no setor agrícola. Na Caatinga, os estudos ainda são reduzidos, mas já há exemplos como rastreabilidade de carne, predição da produtividade da palma forrageira, delineamento de zonas de manejo ou mesmo na estimativa da evapotranspiração de referência. Contudo, há etapas que devem ser superadas até a integração da IA como a habilidade de entender e manusear as ferramentas com IA e a integração dos sistemas dentro da cadeia de suprimentos. Já os resultados do levantamento sistemático apresentam ações como modelagem e previsão do fluxo de água; evapotranspiração; variabilidade, avaliação de terra; previsão de época ótima de semeadura e seleção de cultivares. De modo que, os achados apresentam os diferentes usos da IA, com iniciativas de sustentabilidade habilitadas por mudanças no sistema agrícola atual.