Uso de dados de diferente suporte em geoestatística e desenvolvimentos em simulação geoestátistica multivariada

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Bassani, Marcel Antônio Arcari
Orientador(a): Costa, Joao Felipe Coimbra Leite
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/182312
Resumo: Essa tese investiga três problemas: (1) o uso de dados de diferente suporte em geoestatística, (2) simulação multivariada com restrições e (3) verificação da distribuição multivariada. Quando as amostras tem suporte diferente, essa diferença de suporte precisa ser considerada para construir um modelo de teores. A tese propõe a krigagem utilizando covariâncias médias entre as amostras para considerar dados de diferente suporte. A metodologia é comparada com dois métodos: (1) krigagem utilizando covariâncias pontuais entre os dados e (2) o método indireto. A krigagem utilizando covariâncias pontuais entre os dados ignora a diferença de suporte entre os dados. O método indireto trabalha com a variável acumulação, em vez do teor original. A krigagem com covariâncias médias resultou em estimativas mais precisas do que os outros dois métodos. Depósitos minerais multivariados frequentemente têm variáveis que contém restrições de fração e soma. As restrições de fração ocorrem quando uma variável é parte da outra, como a Alumina Aproveitável e Alumina Total em um depósito de bauxita. A Alumina Aproveitável não pode ser maior do que a Alumina Total. Restrições de soma ocorrem quando a soma das variáveis não pode exceder um valor crítico. Por exemplo, a soma de teores não pode ser maior do que cem. A tese desenvolve uma metodologia para cosimular teores com restrições de soma e fração. As simulações reproduzem os histograms, variogramas e relações multivariadas e honram as restrições de soma e fração. As simulações geoestatísticas multivariadas devem reproduzir as relações entre as variáveis. Dentro desse contexto, essa tese investiga a verificação da distribuição multivariada de simulações geoestatísticas. A tese desenvolve uma métrica de distância entre a distribuição multivariada dos dados e das simulações. A métrica desenvolvida foi efetiva para detectar erro e viés. Além disso, a métrica foi usada para comparar métodos de simulação geoestatística multivariada.