Classificação de dados imagens em alta dimensionalidade, empregando amostras semi-rotuladas e estimadores para as probabilidades a priori

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Liczbinski, Celso Antonio
Orientador(a): Haertel, Vitor Francisco de Araújo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/12014
Resumo: Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando, portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas que utilizam amostras não rotuladas e amostras semi-rotuladas para minimizar o problema do tamanho reduzido das amostras de treinamento. Deste modo, técnicas que utilizam amostras semi-rotuladas, tornamse um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo foi dado prosseguimento à metodologia investigada por Lemos (2003), o qual implementou a utilização de amostras semi-rotuladas para fins de estimação dos parâmetros do classificador Máxima Verossimilhança Gaussiana (MVG). A contribuição do presente trabalho consistiu na inclusão de uma etapa adicional, introduzindo a estimação das probabilidades a priori P( wi) referentes às classes envolvidas para utilização no classificador MVG. Desta forma, utilizando-se funções de decisão mais ajustadas à realidade da cena analisada, obteve-se resultados mais acurados no processo de classificação. Os resultados atestaram que com um número limitado de amostras de treinamento, técnicas que utilizam algoritmos adaptativos, mostram-se eficientes em reduzir o Efeito de Hughes. Apesar deste Efeito, quanto à acurácia, em todos os casos o modelo quadrático mostrou-se eficiente através do algoritmo adaptativo. A conclusão principal desta dissertação é que o método do algoritmo adaptativo é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas.