Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Liczbinski, Celso Antonio |
Orientador(a): |
Haertel, Vitor Francisco de Araújo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/12014
|
Resumo: |
Em cenas naturais, ocorrem com certa freqüência classes espectralmente muito similares, isto é, os vetores média são muito próximos. Em situações como esta dados de baixa dimensionalidade (LandSat-TM, Spot) não permitem uma classificação acurada da cena. Por outro lado, sabe-se que dados em alta dimensionalidade tornam possível a separação destas classes, desde que as matrizes covariância sejam suficientemente distintas. Neste caso, o problema de natureza prática que surge é o da estimação dos parâmetros que caracterizam a distribuição de cada classe. Na medida em que a dimensionalidade dos dados cresce, aumenta o número de parâmetros a serem estimados, especialmente na matriz covariância. Contudo, é sabido que, no mundo real, a quantidade de amostras de treinamento disponíveis, é freqüentemente muito limitada, ocasionando problemas na estimação dos parâmetros necessários ao classificador, degradando, portanto a acurácia do processo de classificação, na medida em que a dimensionalidade dos dados aumenta. O Efeito de Hughes, como é chamado este fenômeno, já é bem conhecido no meio científico, e estudos vêm sendo realizados com o objetivo de mitigar este efeito. Entre as alternativas propostas com a finalidade de mitigar o Efeito de Hughes, encontram-se as técnicas que utilizam amostras não rotuladas e amostras semi-rotuladas para minimizar o problema do tamanho reduzido das amostras de treinamento. Deste modo, técnicas que utilizam amostras semi-rotuladas, tornamse um tópico interessante de estudo, bem como o comportamento destas técnicas em ambientes de dados de imagens digitais de alta dimensionalidade em sensoriamento remoto, como por exemplo, os dados fornecidos pelo sensor AVIRIS. Neste estudo foi dado prosseguimento à metodologia investigada por Lemos (2003), o qual implementou a utilização de amostras semi-rotuladas para fins de estimação dos parâmetros do classificador Máxima Verossimilhança Gaussiana (MVG). A contribuição do presente trabalho consistiu na inclusão de uma etapa adicional, introduzindo a estimação das probabilidades a priori P( wi) referentes às classes envolvidas para utilização no classificador MVG. Desta forma, utilizando-se funções de decisão mais ajustadas à realidade da cena analisada, obteve-se resultados mais acurados no processo de classificação. Os resultados atestaram que com um número limitado de amostras de treinamento, técnicas que utilizam algoritmos adaptativos, mostram-se eficientes em reduzir o Efeito de Hughes. Apesar deste Efeito, quanto à acurácia, em todos os casos o modelo quadrático mostrou-se eficiente através do algoritmo adaptativo. A conclusão principal desta dissertação é que o método do algoritmo adaptativo é útil no processo de classificação de imagens com dados em alta dimensionalidade e classes com características espectrais muito próximas. |