Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Grondona, Atilio Efrain Bica |
Orientador(a): |
Haertel, Vitor Francisco de Araújo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/115269
|
Resumo: |
Esta dissertação aborda o problema da utilização de classificadores paramétricos em dados de alta dimensionalidade. As vantagens trazidas pelos dados em alta dimensionalidade são bem conhecidas. Classes que são muito semelhantes podem, não obstante, ser separadas com um alto grau de acurácia desde que a classificação dos dados seja realizada em um espaço de alta dimensionalidade e que as matrizes de covariância das classes difiram significativamente. Sistemas sensores capazes de adquirir dados de imagem em alta dimensionalidade (dados de imagens hiperespectrais) foram, em parte, desenvolvidos para tirar proveito dessa condição. Nas condições do mundo real, no entanto, temos de enfrentar o problema de estimar um grande número de parâmetros, geralmente, com um número limitado de amostras. Amostras de treinamento são geralmente caras e demoradas para adquirir. Diferentes abordagens para resolver ou, pelo menos, atenuar este problema tem sido um tópico de investigação por parte da comunidade internacional em sensoriamento remoto. Entre outras, uma possível abordagem que tem sido proposta na literatura consiste em aumentar o número de amostras pela adição de amostras semi-rotuladas ao processo de estimação dos parâmetros do classificador. A metodologia investigada nesta dissertação segue esta abordagem geral. O foco principal deste estudo consiste em investigar uma abordagem para estimar os pesos a serem associados às amostras semi-rotuladas. A abordagem proposta inclui duas etapas. Na primeira, as estimativas iniciais para os pesos são realizadas de forma interativa, por meio da utilização de informações espectrais somente. Em uma segunda etapa, os pesos estimados são refinados por meio de informações de contexto espacial. A metodologia proposta é avaliada através de experimentos que fazem uso de dados de imagens hiperespectrais AVIRIS. Os resultados são apresentados e discutidos. Sugestões para futuras pesquisas neste tópico também são apresentados. |