O problema de Dirichlet para a equação das superfícies mínimas em domínios não necessariamente convexos

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Aiolfi, Ari Joao
Orientador(a): Ripoll, Jaime Bruck
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/3422
Resumo: Estudamos o problema de Dirichlet para a equação das superfícies mínimas em domínios limitados do plano. Provamos a existência e unicidade de gráficos mínimos sobre domínios limitados e não necessariamente convexos, com valores no bordo satisfazendo uma condição que denominamos condição da declividade limitada generalizada a qual, usando cilindros no lugar de planos, generaliza a condição clássica da declividade limitada. Com este resultado, dado um domínio limitado e suave qualquer do plano, conseguimos obter cotas explícitas para a norma C2 de dados no bordo deste domínio que garantem a existência de solução ao correspondente problema de Dirichlet.