Detalhes bibliográficos
Ano de defesa: |
1994 |
Autor(a) principal: |
Bellincanta, Leandro Sebben |
Orientador(a): |
Ripoll, Jaime Bruck |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/127338
|
Resumo: |
Esta dissertação trata do problema de Dirichlet para a equação das superfícies minimas em domínios não limitados do plano. Estabelecemos um teorema, devido a Collin-Krust, que fornece uma estimativa para a diferença de duas soluções distintas em uma vizinhança do inftnito. Estudamos também a questão da existência e da unicidade de soluções em conjuntos convexos não limitados do plano. Entre tais conjuntos estão a faixa e o semi-plano. No apêndice apresentamos um exemplo de uma situação onde o problema de Dirichlet para a equação das superfícies mfnimas não possui solução. |